skip to main content


Search for: All records

Creators/Authors contains: "Lepine, Lucie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Airborne remote sensing data were acquired specifically for the EPSCoR NH Ecosystems and Society project to provide vegetation biometric and land surface optical properties at the landscape-scale. Data were acquired for targeted field sites that include the Lamprey River Watershed, the Hubbard Brook Experimental Forest and the Bartlett Experimental Forest, where soil and aquatic sensors are deployed and intensive field sample plots have been established to measure a range of vegetation and land surface properties. Two image data collection campaigns were deployed—one in summer (August 2012) to capture peak growing season conditions in the state, and one in winter (Feb/March 2013). This data package contains the flightlines for Hubbard Brook. Data are georegistered and atmospherically corrected to surface reflectance for February 22, 2013. 
    more » « less
  2. Airborne remote sensing data were acquired specifically for the EPSCoR NH Ecosystems and Society project to provide vegetation biometric and land surface optical properties at the landscape-scale. Data were acquired for targeted field sites that include the Lamprey River Watershed, the Hubbard Brook Experimental Forest and the Bartlett Experimental Forest, where soil and aquatic sensors are deployed and intensive field sample plots have been established to measure a range of vegetation and land surface properties. Two image data collection campaigns were deployed—one in summer (August 2012) to capture peak growing season conditions in the state, and one in winter (Feb/March 2013). This data package contains the flightlines for Hubbard Brook. Data are georegistered and atmospherically corrected to surface reflectance for March 9, 2013. 
    more » « less
  3. Airborne remote sensing data were acquired specifically for the EPSCoR NH Ecosystems and Society project to provide vegetation biometric and land surface optical properties at the landscape-scale. Data were acquired for targeted field sites that include the Lamprey River Watershed, the Hubbard Brook Experimental Forest and the Bartlett Experimental Forest, where soil and aquatic sensors are deployed and intensive field sample plots have been established to measure a range of vegetation and land surface properties. Two image data collection campaigns were deployed—one in summer (August 2012) to capture peak growing season conditions in the state, and one in winter (Feb/March 2013). This data package contains the flightlines for Hubbard Brook. Data are georegistered and atmospherically corrected to surface reflectance for August 7, 2012. 
    more » « less
  4. A canopy nitrogen map was created for the Hubbard Brook Experimental Forest and watersheds using airborne imaging spectrometer data collected by SpecTIR LLC (Reno, NV) on August 7, 2012, and associated field data. Leaf samples collected in the field were analyzed for nitrogen concentration, scaled to plot (whole canopy) level, and related to airborne imaging spectrometer reflectance data using partial least squares regression modeling to derive spatially explicit estimates of canopy nitrogen concentration (mass-based) for the spatial extent of the airborne imagery. 
    more » « less
  5. Abstract

    Northern temperate ecosystems are experiencing warmer and more variable winters, trends that are expected to continue into the foreseeable future. Despite this, most studies have focused on climate change impacts during the growing season, particularly when comparing responses across different vegetation cover types. Here we examined how a perennial grassland and adjacent mixed forest ecosystem in New Hampshire, United States, responded to a period of highly variable winters from 2014 through 2017 that included the warmest winter on record to date. In the grassland, record‐breaking temperatures in the winter of 2015/2016 led to a February onset of plant growth and the ecosystem became a sustained carbon sink well before winter ended, taking up roughly 90 g/m2more carbon during the winter to spring transition than in other recorded years. The forest was an unusually large carbon source during the same period. While forest photosynthesis was restricted by leaf‐out phenology, warm winter temperatures caused large pulses of ecosystem respiration that released nearly 230 g C/m2from February through April, more than double the carbon losses during that period in cooler years. These findings suggest that, as winters continue to warm, increases in ecosystem respiration outside the growing season could outpace increases in carbon uptake during a longer growing season, particularly in forests that depend on leaf‐out timing to initiate carbon uptake. In ecosystems with a perennial leaf habit, warming winter temperatures are more likely to increase ecosystem carbon uptake through extension of the active growing season. Our results highlight the importance of understanding relationships among antecedent winter conditions and carbon exchange across land‐cover types to understand how landscape carbon exchange will change under projected climate warming.

     
    more » « less